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ABSTRACT

In this paper, we aim to assist the measurement of the volume of lower-limb muscles from 3D freehand ultrasound
images. Volume estimation typically requires a very time-consuming manual segmentation step. To facilitate
and speed-up the volume measurements, in this paper, we propose a non-learning based approach that, starting
from sparse annotations of muscles in 2D images, propagates the labels to the full volume. Furthermore, we rely
on 3D-3D image-based registration to combine labels from different ultrasound acquisitions of the same muscle
with different qualities. Our goal here is to provide a simple and low-cost solution, relying mainly on open-source
software for the processing steps. The proposed approach effectively reduces the manual interaction time while
providing reasonable estimations for the segmentation and volume calculation. We achieve a mean dice score of
0.89±0.03 and a mean volumetric measure error of 4,18%. The resultant volumes may also be useful for building
augmented annotated databases to develop automatic learning-based segmentation approaches.
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1. INTRODUCTION

Each year, one over 3500 children suffers from Duchenne Muscular Dystrophy (DMD). This degenerative muscular
disorder affects men, generating progressive muscle atrophy and loss of autonomy at an early age. The amount of
low-limb muscle’s volume is an important discriminative metric for diagnosis and follow-up.1 It is also considered
when validating new therapies.2 Volumes are typically measured from Computer Tomography (CT) and Magnetic
Resonance (MR) images. These modalities are, however, impractical for young children. Therefore, recently
Pichiecchio et.al.3 has pointed to US imaging instead.

US has the advantage of being a fully noninvasive and risk-free procedure while permitting a real-time
acquisition. It is also relatively inexpensive compared to MRI (the gold standard for volume calculation).
However, the image quality of US is inferior, making its interpretation harder. In particular, the nature of
ultrasound physics results in images with low signal-to-noise ratio, speckle, attenuation, and missing borders.
Furthermore, the contrast between areas of interest is often low.

In practice, to measure the volume occupied by a muscle from an ultrasound image, an expert needs to
delineate the muscle borders on 2D slices. Delineation could be done either on partial but high-resolution B-
mode images, or on 2-D slices extracted from a 3D image after reconstruction (compounding of an optically
tracked freehand acquisition). However, The complete delineation of all the slices in an acquisition/volume is
too time-consuming and impractical when dealing with several patients.

The first objective of this work is to propose a simple yet effective semi-automatic method to alleviate the
delineation efforts of the expert. We favor methods that reduce the manual segmentation time while accurately
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approximating the volume estimation. This step is also crucial for creating reliable “ground truth” segmentation
masks,4 which are the main requirement for later developing any machine learning algorithm.

The second objective of this study is to investigate the feasibility of label transfer between acquisitions
acquired under different parameter settings. Such acquisitions are required since certain anatomical structures
are deeper than others, and thus better seen under lower frequencies.5 Experts will segment the structures only on
the acquisition where the muscle is the most visible, even if present in both. Such selective segmentation generates
volumes where only some of the muscles are annotated. We propose here to exploit 3D image registration, to
transfer the manual annotations performed on the most visible sequence to the other acquisition where the muscle
in question is less visible but still present. Thereby, we offer complete anatomical labels over each acquisition,
which can improve the variability of a database for training, and thus the generalization ability of a learning-based
automatic segmentation algorithm.6

In our previous work ,6 we have proposed a learning-based segmentation approached trained only on in-
complete masks from low-resolution 2D images obtained after 3D compounding. In this paper, we improve
the quality of the training dataset at a low computational cost, by first, propagating annotations done on 2D
B-mode images before the reconstruction step, which have a higher resolution; and second, by transferring the
annotations between two acquisitions of the same patients.

Our contributions are:

1. We demonstrate that segmentation masks made on acquisitions with different parameters can be transferred
to each other, by means of 3D spatial registration.

2. We propose a semi-automatic segmentation method, useful to accelerate the annotation of 3D US freehand
acquisitions. The method starts from the partial annotations of muscles on a selection high-resolution
B-mode images. Based on the image pose we are able to propagate the annotations first along each sweep
before 3D reconstruction. The approach leads to a mean dice of 89% on a database of 10 subjects with
volumes of size 564x632x1443± (49x38x207).

2. RELATED WORK

US image segmentation is a challenging task due to the intrinsic characteristics of the modality. Although there
is currently a plethora of learning based US segmentation methods ,4 we are interested here in the upstream
procedure to build good databases for training with minimal expert efforts. Despite being crucial, such approaches
are less documented nowadays. Yoshizumi et.al.7 propose a multiple-frequency ultrasonic imaging approach
to enhance the image resolution by superimposing and mixing several images with different frequencies. In this
way, more structures become visible facilitating their segmentation. Although effective, such a method modifies
the image content itself. Here we also make acquisitions with two frequencies, but we use the most adapted one
for the manual segmentation of each muscle. For transferring annotations across the two sequences we rely on
mono-modal image-based rigid registration .8

When done manually ultrasound-segmentation, besides being difficult, is very time-consuming. The aim of
this work is not to develop a novel and general segmentation algorithm, but instead to propose a simple approach
to accelerate the manual segmentation process in the context of freehand ultrasound acquisitions. Several software
solutions propose interactive or semi-automatic segmentation tools to propagate initial annotations or seeds.
However, clinical experts are still required to initialize the seeds and refine the segmentation after automatic
propagation. Software such as Slicer,9 Imfusion10 and Stradwin,11 offer non-learning based built-in functions
such as “Fill Between Slices”, “grow from seeds” and “watershed” for label propagation.

Such non-learning based propagation methods can be divided into two categories. The first does propagation
over binary label masks only, while the second takes into account the image content on top of the label-seeds. In
the category of label-interpolations approaches, the “Fill Between Slices” method 12 from Slicer is an iterative
morphological contour interpolator method using pixel morphological dilatation to create a gradual change in
the object shape. Similarly, the “maximal disc-guided interpolation” method13 from Stradwin interpolates a
surface through sparse non-parallel labels. Both methods12,12 perform interpolation on the 3D volume after



reconstruction. Instead, we propose here to interpolate between two partial expert annotations done on 2D
B-mode images along the sweep to achieve higher resolution masks.

In the second category are methods that take into account the image content. In addition to enforcing
a smooth transition between the annotated slices, they push the segmented region’s boundaries to coincide
with the image contours. Here we find watershed 14 as well as graph-cut 15 methods. Most of the built-
in approaches assume homogeneous areas of interest and well-defined image contours. Despite the competitive
performance in other modalities, the assumptions above do not hold in the case of muscles in US images, resulting
in leakage. Without a specialized modification, the simple built-in implementation requires a large amount of
labeled background and foreground seeds.

In this paper, we combine a binary label propagation directly on the B-mode images, with the label transfer
across acquisitions of two-frequencies. This simple solution provides a non-learning-based baseline for the seg-
mentation of volumes in 3D freehand ultrasound images while alleviating the annotation burden when building
databases for supervised segmentation methods.

3. MATERIALS AND METHODS

3.1 Dataset Description

a) b)

c) d)

Figure 1. Volume compounding using 3D slicer. a) B-mode image. b)Spatial displacement of US images in low speed.
c)Sagittal cross-section of the 3D volume. d) 3d compounded US volume of the lower leg.

Our dataset comes from the study of Crouzier et al.16 Each participant stays prone, with their lower leg
in a custom-made water bath while 2 US freehand image sequences with different parameters were recorded
(See Fig 2). Four to six parallel sweeps were performed from the knee to the ankle, and the probe was tracked



with reflected points optically∗. B-mode images (3.9 cm width, 9.5 cm depth±1.2 ) were recorded each 5 mm
displacement in low-speed †. 3D ultrasound volumes were compounded using the tracking matrices of the probe,
filling a voxel grid of 564 × 632 × 1443 ± (49 × 38 × 207). With a pixel spacing of 0.276993mm/pixel ± 0.015.
See fig 1.

Out of the original 44 participants we select 10 with 2 recordings (x1 and x2). For this selection, we have
both the annotation of a selection of the 2D B-mode images that will be used as seeds, but also the manual
annotation of every slice in the reconstructed 3D volume for the quantitative evaluation.

Image-based Rigid Registration is used to align the 2 reconstructed US volumes of the same participant
bringing similar structures to the same spatial position in a common grid. This registration was done with
imfusion software,10 but it can be done with other similar tools. After registration, the muscle structures overlap
and segmentation can be done indistinctly over one register or the other.

a) b) c) d) e)

Figure 2. a)5 B-mode image sweeps. b)First acquisition c)Second acquisition d)Misaligned volumes e)Volumes after
registration.

3.2 Manual Segmentation

Slice by slice segmentation over the cross-sectional area (CSA) is proved to be the most reliable method to
perform skeletal volume muscle quantification4 over MRI images. Placed on the “sagittal” plane, the annotator
scrolls up and down for each structure to have an idea of how muscles evolve in order to relate them to anatomical
knowledge. The following recommendations were followed to harmonize the masks from different annotators:
Identify the brightest structures as bones (fibula and tibia) and ligaments. Use the knowledge that muscles
separate from the bone at two-thirds of the leg. First, proceed with the annotations over slices with high certainty,
with a 3D spherical brush. When possible, provide smooth annotations with slices ahead and backwards. In case
of unclear boundaries, use the shape information from other anatomical structures in the nearby context. Tracing
those structures until the problematic slice to decrease ambiguities. The training on the software demands around
5 hours of adaptation, and the segmentation of 3 muscles in 10 patients takes around 25 hours, equivalent to 149
minutes per patient, and 50 per muscle.

3.3 Proposed method

In this section, we describe the label propagation method to semi-automatically segment the full volume starting
from sparse seeds. We then describe the method to transfer annotations from one sequence to a second one
acquired with a different ultrasound frequency, in order to provide fully annotated volumes.

First, partial annotations on some of the high-resolution B-mode images are collected (Fig 4 a and b). Having
two such masks over B-mode images on a sweep (Fig 4 b), the zero-order label propagation consists of copying
the smallest mask to all unlabelled images in between. This is done for every pair of available partial masks. An
intermediate step during this “sweep-interpolation” process is shown in Fig 4 c). We then apply a smoothing

∗Optitrack system, Natural point, USA
†Recorded with a 40mm linear VERMON probe: 2-10 MHz; and Aixplorer, Supersonic Imagine Ultrasound machine,

Aix-en-Provence, France



a) b) c) d) e)

Figure 3. Manually annotated (“ground truth”) dataset: a)Inferior borders delineation with spherical brush b) Muscle
contour c)Annotations overlap d)Masks over hard register d)3D muscles segmentation.

Gaussian filter of kernel size 7x7 to the compounded interpolated volume (Fig 4d), which leads to a smooth
muscle mask (Fig 4 e). Fig 4 f) presents an example of the obtained propagation on the sagittal plane, closely
following the edges of the Soleus structure.

c) d) e) f )a) b) g)

Figure 4. a) B-mode image and partial mask in red. b) Initial partial annotations used as seeds for the label propagation
method. c) Zero order interpolation method in process d) Volume compounding from interpolation e) Volume compound-
ing after smoothness. f) Example of a propagated mask after compounding and smoothness for the Soleus muscle. The
purple region is a cross-sectional slice of the volume g) Equivalent amount of parallel annotations.

Gastrocnemius medial (GM) and Gastrocnemius lateral (GL) segmentations were done over a first acquisition,
called x1. Soleus (SOL) segmentation was done over the second one with more gain and less frequency, called
x2. For each participant, with the two registers x1 and x2, we apply monomodal image-based rigid registration
algorithm.

Figure 5. left) sparse annotations from the two acquisitions before alignment. The GM (green) and GL (red) masks
were annotated on the first acquisition, while the Soleous (purple) masks were annotated on the second. Middle-left)
Transverse view of the misaligned sparse annotations overlaid on the US volume. Middle-right) Transverse view of the
sparse annotations overlaid on the US volume after registration. Right) Aligned sparse annotations.

Decoupling the annotation of organs at different depths and transferring the annotations from the best-suited
acquisition to the less suited one improves the quality of the masks.



The overall proposed approach consists of several simple steps making it highly reproducible while, as we
show later, significantly reduces the annotation burden. The method is of particular interest when building
annotated databases for training deep-learning models, where the amount but also the diversity of the dataset
are directly related to the performance and generalization ability.

4. EXPERIMENTAL VALIDATION

In order to validate the two main contributions of this work, we used the 2 recordings of 10 different patients over
which the 3 muscles had sparse annotations. As in figure 6). We perform a comparison with other non-learning
semi-automatic methods for muscle segmentation in 3D ultrasound images and evaluate the overlap of manual
and the computed segmentation masks, as well as the difference in terms of volume estimation. Appendix A
contains a more detailed description of the semi-automatic segmentation methods and evaluation metrics.

4.1 Qualitative results of label-propagation methods

We used the Slicer 3D open-source software implementation of the compared semi-automatic segmentation al-
gorithms: “Fill Between Slices (FBS)”, “Grow from seeds (GFS)” and “Watershed (WS)”.

The results of these methods evidence the daily challenges that experts are faced with when provided manual
annotations for ultrasound images. The lack of well-defined edges and the little contrast between regions of
interest makes it difficult to define the segmentation mask borders for both experts and methods.

a) b) c) d) e)

Figure 6. Qualitative results: a)Ground truth b)Fill between slices c)Grow from seeds d)Watershed e)Our method.

The qualitative visualization in Fig 6 shows that GFS and WS methods suffer from leakage. They have
difficulties setting meaningful limits to the seed propagation due to the ambiguity of image contours on ultrasound
images. FBS method ensures a smooth transition, but it demands parallel annotations that are not available in
our case‡. Our dataset of 44 participants and 59 volumes has non-parallel partial masks, see Fig 4 b.

Our proposed ZOI method does not suffers from leakage and follows more closely the overall muscle shape.
Nevertheless, it tends to over-smooth the results and some details on the borders may be missing.

4.2 Quantitative results of non-learning segmentation methods

In terms of segmentation performance, our method performs the best for the smaller muscles, GL and GM. The
performance on the Soleus muscle is better with FBS followed by our method. We achieve 0.908± 0.04 of DICE
and 0.877± 0.02 of mIoU over the amount of the muscles.

Our semi-automatic method is faster than slice by slice segmentation and FBS method, as we can see in table
1. It can be used as initialization for the remaining 34 acquisitions that have not been fully manually annotated.
Initialization with the resultant volumes followed by expert corrections takes around 2 hours per muscle. This
is less time-consuming compared with the 4 hours per muscle need on the reliable slice by slice method. This
approaches brings a significant time gain.

‡We generate such parallel seeds by sampling from the the ground truth volumes an equivalent amount of slices to
have a valid comparison (Fig 4 g)



Table 1. Quantitative Results for 10 participants

DICE IoU

Algorithm Time [min] GL GM SOL GL GM SOL

ZOI 90 0.937 0.946 0.841 0.882 0.898 0.791

FBS 96 0.909 0.924 0.919 0.835 0.859 0.851

GBS 44 0.818 0.755 0.763 0.699 0.615 0.620

WS 120 0.742 0.764 0.803 0.591 0.619 0.671

4.3 Volume estimation

In terms of volumetric error, our method presents smaller values, as shown in Table 2. we achieved around 4.17%
of mean error computed over the transferred annotations x1.

All of the non-learning semi-automatic segmentation methods on 3D US volumes provide quite good overlap
with the volume computed from the ground-truth segmentation. For the Soleus muscle, Errors on the segmen-
tation borders do not have a large impact on the estimated volume. Despite the leakage and muscles not being
properly delimited for some methods, the volumetric error is reasonably low given the large region of overlap with
the ground truth. In this sense, it is recommended that volume measurements are accompanied with additional
measurements quantifying for instance the smoothness of the volume.

Table 2. Quantitative volumetric error for 10 participants

Algorithm GL GM SOL

ZOI method 2.61 4.98 4.93

Fill between slices 10.00 10.70 13.03

Grow from seeds 24.02 10.61 15.53

Watershed 7.60 7.99 10.52

5. CONCLUSION AND FUTURE WORK

In this work, we propose a method consisting of simple steps to accelerate the manual segmentation of large
volumetric US images. The expert is expected to provide sparse and partial annotations that are then propagated
across a sweep of the US probe. A second part of the approach, acquires data with different frequencies and
transfers labels from the simpler to the more complex to annotate acquisitions.

The simplicity of the zero-order interpolation approach makes it a good strategy for the application given the
smooth changes of the muscle contours. The tested implementations of seed propagation methods suffer from
leakage and would largely benefit from shape constraints, e.g. in the form of priors.

Given the importance of reducing annotation time, we will direct our method to fully annotate the 44
available US volumes, providing volumes with GM, GL, and Soleus muscles masks, on both low-frequency and
high-frequency acquisitions.

These data will then serve for the training and validation of automatic deep-learning based segmentation
methods.
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APPENDIX A. DETAILS ON THE COMPARED METHODS

A.1 Non-learning methods for label propagation

• Fill between slices:
It is a iterative-morphological-Contour-Interpolator-method proposed by Albu et al.12 and implemented in
3DSlicer software.17 It does not take into account the images of the volume, just the initial parallel spaced
annotations.

As input, it receives binary masks belonging to the same anatomical structure. Normally, structures evolve
and regions split. It handles these topological changes. Each iteration interpolates between two shapes (A
and B). Overlapping determine correspondences. A transition sequence of pixel morphological dilatation
is generated.

The m iterative conditional dilation of set B respect to A use the structuring element K. It is defined as:

B ⊕m
A K = (((B ⊕A K)⊕A K)...)mtimes (1)

Where B ⊕A K is defined as ((B ⊕ K) ∩ A.) This creates a smooth, gradual change of shape, without
generating over-smooth.

The implementation is multi-threaded, and processing one of the test inputs takes around 1 or 2 seconds on
a quad-core processor. Normally, it is applied on the current transformer (CT) and MRI dataset composed
of parallel slices. But it is also valid as an approach for our dataset of 3D ultrasound volumes.

• Grow from seeds:
It is a binary-interactive-automatic segmentation method proposed by Boykov et al.15 and implemented
on 3DSlicer software.

It takes into account the image P, one seed of the object of interest (o ∈ O) and one seed of the background
(b ∈ B) at least. The goal is to to find the optimal cut between background and foreground. A graph is
defined. G =< E,V >. Vertex are the pixels of the image and the seeds. In other worlds, vertex v ∈ V with
V = {pi ∈ Image} ∪ {o ∈ O} ∪ {b ∈ B}.
Each pixel has two links/edges at least, one to the background seed and other to the foreground seed
(e ∈ E). The Value of edges is defined according to their type (neighborhood links or terminal links) with
the table on.15 The segmentation boundary is the minimum cost cut on the graph G. It is computed
exactly in polynomial time via algorithms for two terminal graph cuts.

This interpolation method works well with homogeneous structures and contours well defined.

• Watershed:
It is a morphological-recursive segmentation algorithm proposed by Beare et al.14 and implemented on
3DSlicer software.18 It uses markers, similar to grow from seeds, with the difference that smoothness of
structures can be enforced, which can prevent leakage. In contrast, it is much slower.

Gray-scale images are interpreted like “topographic maps”, using intensities values as a new dimension.
The brightest segments are the “borders”, they delimit a sort of “catchment basins”. The goal is to
assign a different label to each basin, hopping they contain the object of interest.19 On ultrasound, this
focus property on the brightest regions is interesting because experts do the same. Bones’ surfaces and
Epymisiums § shine more.

As input, it receives a grayscale image, seeds of the background, and seeds of, at least, one object of interest.
Additionally, it receives a “percentage-value”, it is an approximate percentage of pixels corresponding to
the object of interest.

§Epymisium fibrous tissue envelope that surrounds the skeletal muscle.



Algorithm implementation first computes a bright spots detection over the grayscale image, saved as
“feature-Image”. It is the result of computing recursively a gradient magnitude filter after a Gaussian
smoothness. Second, it creates a “label-image” with seeds values. Third, at least two priority queues are
filled with neighboring pixels of seeds and the background. Priority level corresponds to the value on the
“feature-image” (gradient magnitude). Fourth, neighbor pixels with the highest priority level are extracted
from the priority queue, in the ratio defined with the “percentage-value”. If extracted pixels are unlabeled,
the value of the corresponding queue is assigned.

Steps three and four are repeated until priority queues are empty. This floods successively the grey value
relief, and basins emerge along the edges. Over medical images this algorithm normally over-segment.
Either the image must be pre-processed or the regions must be merged on the basis of a similarity criterion
afterward.

A.2 Metrics for 3D volumes

Prediction errors for 3D volumes can be evaluated in terms of the contour, the area, and the content. Contour
metrics use the surface correlation. Area metrics use values of true positives, true negatives, false positive
and false negatives pixels (TP, TN, FP, FN) to define a percentage of accuracy. Content metrics calculate the
existence of inside holes and boundary holes in the segmented region.

• Dice and IoU:
These metrics evaluate the correlation between the ground truth and the prediction. It use the amount of
true positive values(TP), false positive values(FP) and false negative values(FN).

dice =
2 ∗ TP

2TP + FP + FN
(2)

IoU =
dice

2− dice
(3)

• Average Surface Distance and Hausdorff distance:
These metrics estimates the error between the surfaces of the ground truth and the prediction (S and S’).
If p ∈ S, the distance to S’ is given by the minimum of the Euclidean norm: d(p, S′) = minp′∈S′ ||p− p′||2.
Calculating these values for all the points, with nS equal to the number of pixels on S surface, the average
surface distance is given by equation 4. Hausdorff distance is the largest difference between the surface
distances, expressed in equation 5. To obtain values in mm, we multiply metrics by the spacing of the
volume.

ASD = (
1

nS + nS′
) ∗ (

nS∑
p=1

d(p, S′) +

nS′∑
p′=1

d(p′, S)) (4)

HD = max[d(S, S′), d(S′, S)] (5)
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